Light and matter merge in quantum coupling

Physicists probe the boundaries of light-matter interactions as they bridge traditional condensed matter physics and cavity-based quantum optics.



Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Rice physicists are closing in on a way to create a new condensed matter state in which all the electrons in a material act as one by manipulating them with light and a magnetic field. The effect made possible by a custom-built, finely tuned cavity for terahertz radiation shows one of the strongest light-matter coupling phenomena ever observed.

The work by Rice physicist Junichiro Kono and his colleagues is described in Nature Physics. It could help advance technologies like quantum computers and communications by revealing new phenomena to those who study cavity quantum electrodynamics and condensed matter physics, Kono said.

Condensed matter in the general sense is anything solid or liquid, but condensed matter physicists study forms that are much more esoteric, like Bose-Einstein condensates. A Rice team was one of the first to make a Bose-Einstein condensate in 1995 when it prompted atoms to form a gas at ultracold temperatures in which all the atoms lose their individual identities and behave as a single unit.

The Kono team is working toward something similar, but with electrons that are strongly coupled, or “dressed,” with light. Qi Zhang, a former graduate student in Kono’s group and lead author of the paper, designed and constructed an extremely high-quality cavity to contain an ultrathin layer of gallium arsenide, a material they’ve used to study superfluorescence. By tuning the material with a magnetic field to resonate with a certain state of light in the cavity, they prompted the formation of polaritons that act in a collective manner.

“This is a nonlinear optical study of a two-dimensional electronic material,” said Zhang, who based his Ph.D. thesis on the work. “When you use light to probe a material’s electronic structure, you’re usually looking for light absorption or reflection or scattering to see what’s happening in the material. That light is just a weak probe and the process is called linear optics.

“Nonlinear optics means light does something to the material,” he said. “Light is not a small perturbation anymore; it couples strongly with the material. As you change the coupling strength, things change in the material. What we’re doing is the extreme case of nonlinear optics, where the light and matter are coupled so strongly that we don’t have light and matter anymore. We have something in between, called a polariton.”

For More..



Leave a Reply

Your email address will not be published. Required fields are marked *